Crystalline polymers in nanoscale 1D spatial confinement
Macromolecules, ISSN: 0024-9297, Vol: 39, Issue: 17, Page: 5782-5788
2006
- 110Citations
- 55Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A series of semicrystalline block copolymers, poly(4-vinylpyridine)-block-poly(ε-caprolactone) (P4VP-PCL), with lamellar microstructure have been synthesized. Owing to the vitrified P4VP microdomains and strongly segregated microphase separation, the crystallization of the PCL blocks in P4VP-PCL was carried out within the nanoscale confinement. Simply by varying the molecular weight of the block copolymer, namely the confined size, polymeric crystallization can be tailored in the one-dimensional confinement. A distinct nucleation mechanism, altering from heterogeneous to homogeneous nucleation, was obtained once the confined size became smaller than a critical dimension, equivalent to the regular thickness of heterogeneously nucleated crystalline lamellae. Consequently, discrete crystalline granules were generated through homogeneous nucleation, namely a single nucleus within one granule. Also, crystal growth was altered from specific to random orientation with respect to the interface between the crystalline and amorphous domains in the copolymers. This system thus serves as a model to analyze the impact of confined size in 1D spatial confinement on the crystallization of polymers. © 2006 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know