Dynamics of polymorphic nanostructures: From growth to collapse
Nano Letters, ISSN: 1530-6984, Vol: 6, Issue: 9, Page: 1875-1879
2006
- 29Citations
- 15Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations29
- Citation Indexes29
- 29
- CrossRef22
- Captures15
- Readers15
- 15
Article Description
The deposition of preformed clusters on surfaces offers new possibilities to build complex artificial nanostructures, the shape of which depends on the cluster size. We describe routes for generating unusual polymorphic nanoislands, which constitute unique platforms for exploring instabilities. As coverage increases, the constraints accumulated In such nanostructures induce spectacular flattening collapse processes, which are not observed when the constraints are imposed by the substrate. © 2006 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know