Bound excitons in metallic single-walled carbon nanotubes
Nano Letters, ISSN: 1530-6984, Vol: 7, Issue: 6, Page: 1626-1630
2007
- 106Citations
- 109Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations106
- Citation Indexes106
- 106
- CrossRef98
- Captures109
- Readers109
- 109
Article Description
We extend previous ab initio calculations on excitonic effects in metallic single-walled carbon nanotubes to more experimentally realizable larger diameter tubes. Our calculations predict bound exciton states in both the (10,10) and (12,0) tubes with binding energies of approximately 50 meV providing experimentally verifiable changes to the absorption line shape in each case. The second and third van Hove singularities in the joint density of states also give rise to a single optically active bound or resonant excitonic state. © 2007 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know