New insights of transmembranal mechanism and subcellular localization of noncovalently modified single-walled carbon nanotubes
Nano Letters, ISSN: 1530-6984, Vol: 10, Issue: 5, Page: 1677-1681
2010
- 145Citations
- 87Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations145
- Citation Indexes145
- 145
- CrossRef129
- Captures87
- Readers87
- 87
Article Description
Translocation and localization of single-walled carbon nanotubes (SWNTs) in normal and cancerous cells have significant biomedical implications. In this study, SWNTs functionalized with different biomolecules in cells were observed with confocal laser scanning microscopy. Functionalized with PL-PEG, SWNTs were found to localize exclusively in mitochondria of both tumor and normal cells due to mitochondrial transmembrane potential, but they were found mainly in lysosomes of macrophages due to phagocytosis. However, when conjugated with different molecules, the subcellular localization of the surface-modified SWNT-PL-PEG depended on how SWNTs enter the cells: inside mitochondria if crossing cell membrane or inside lysosomes if being endocytosized. We also show that mitochondrial SWNT-PL-PEG, when irradiated with a near-infrared light, can induce cell apoptosis due to mitochondrial damages. These findings provide a better mechanistic understanding of cellular localization of SWNTs, which could lead to advanced biomedical applications such as the design of molecular transporters and development of SWNT-assisted cancer therapies. © 2010 American Chemical Society.
Bibliographic Details
American Chemical Society (ACS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know