Shape-controlled Au particles for InAs nanowire growth
Nano Letters, ISSN: 1530-6984, Vol: 12, Issue: 1, Page: 315-320
2012
- 39Citations
- 50Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations39
- Citation Indexes39
- 39
- CrossRef36
- Captures50
- Readers50
- 50
Article Description
We present a study of InAs nanowire (NW) growth with shape-controlled Au seed particles. In comparison to more conventional spherical particles, the highly faceted, shaped Au particles are found to enhance the initial growth kinetics of InAs NWs at identical growth conditions. Analysis of the NWs after growth by transmission electron microscopy and energy-dispersive spectroscopy suggests that while In diffuses into the bulk of the shaped Au particles, in accordance with the vapor-liquid-solid (VLS) growth mechanism, the surface faceting is preserved. A key difference is that the shaped Au particles are characterized by a thicker In shell on their surfaces than the spherical Au particles, indicating that increased adsorption of In leads to the observed growth rate enhancement. On the basis of these results, we propose that our picture of VLS growth in regards to liquefaction and droplet formation is incomplete and that the initial particle morphology can be used to tailor NW growth. © 2011 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know