Quantitative super-resolution imaging reveals protein stoichiometry and nanoscale morphology of assembling HIV-gag virions
Nano Letters, ISSN: 1530-6984, Vol: 12, Issue: 9, Page: 4705-4710
2012
- 58Citations
- 121Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations58
- Citation Indexes58
- CrossRef58
- 57
- Captures121
- Readers121
- 121
Article Description
The HIV structural protein Gag assembles to form spherical particles of radius ∼70 nm. During the assembly process, the number of Gag proteins increases over several orders of magnitude from a few at nucleation to thousands at completion. The challenge in studying protein assembly lies in the fact that current methods such as standard fluorescence or electron microscopy techniques cannot access all stages of the assembly process in a cellular context. Here, we demonstrate an approach using super-resolution fluorescence imaging that permits quantitative morphological and molecular counting analysis over a wide range of protein cluster sizes. We applied this technique to the analysis of hundreds of HIV-Gag clusters at the cellular plasma membrane, thus elucidating how different fluorescent labels can change the assembly of virions. © 2012 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know