Crystalline liquid and rubber-like behavior in Cu nanowires
Nano Letters, ISSN: 1530-6984, Vol: 13, Issue: 8, Page: 3812-3816
2013
- 46Citations
- 57Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations46
- Citation Indexes46
- 46
- CrossRef43
- Captures57
- Readers57
- 57
Article Description
Via in situ TEM tensile tests on single crystalline copper nanowires with an advanced tensile device, we report here a crystalline-liquid-rubber-like (CRYS-LIQUE-R) behavior in fracturing crystalline metallic nanowires. A retractable strain of the fractured crystalline Cu nanowires can approach over 35%. This astonishing CRYS-LIQUE-R behavior of the fracturing highly strained single crystalline Cu nanowires originates from an instant release of the stored ultralarge elastic energy in the crystalline nanowires. The release of the ultralarge elastic energy was estimated to generate a huge reverse stress as high as ∼10 GPa. The effective diffusion coefficient (D) increased sharply due to the consequent pressure gradient. In addition, due to the release of ultrahigh elastic energy, the estimated concomitant temperature increase was estimated as high as 0.6 Tm (Tm is the melting point of nanocrystalline Cu) on the fractured tip of the nanowires. These factors greatly enhanced the atomic diffusion process. Molecular dynamic simulations revealed that the very high reverse stress triggered dislocation nucleation and exhaustion. © 2013 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know