Direct imaging of band profile in single layer MoS on graphite: Quasiparticle energy gap, metallic edge states, and edge band bending
Nano Letters, ISSN: 1530-6992, Vol: 14, Issue: 5, Page: 2443-2447
2014
- 405Citations
- 508Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations405
- Citation Indexes405
- 405
- CrossRef376
- Captures508
- Readers508
- 506
- Mentions1
- News Mentions1
- News1
Most Recent News
Giant gate-tunable bandgap renormalization and excitonic effects in a 2-D semiconductor
Investigating the remarkable excitonic effects in two-dimensional (2-D) semiconductors and controlling their exciton binding energies can unlock the full potential of 2-D materials for future applications in photonic and optoelectronic devices. In a recent study, Zhizhan Qiu and colleagues at the interdisciplinary departments of chemistry, engineering, advanced 2-D materials, physics and materials
Article Description
Using scanning tunneling microscopy and spectroscopy, we probe the electronic structures of single layer MoS on graphite. The apparent quasiparticle energy gap of single layer MoS is measured to be 2.15 ± 0.06 eV at 77 K, albeit a higher second conduction band threshold at 0.2 eV above the apparent conduction band minimum is also observed. Combining it with photoluminescence studies, we deduce an exciton binding energy of 0.22 ± 0.1 eV (or 0.42 eV if the second threshold is use), a value that is lower than current theoretical predictions. Consistent with theoretical predictions, we directly observe metallic edge states of single layer MoS . In the bulk region of MoS, the Fermi level is located at 1.8 eV above the valence band maximum, possibly due to the formation of a graphite/MoS heterojunction. At the edge, however, we observe an upward band bending of 0.6 eV within a short depletion length of about 5 nm, analogous to the phenomena of Fermi level pinning of a 3D semiconductor by metallic surface states. © 2014 American Chemical Society.
Bibliographic Details
American Chemical Society (ACS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know