Multiplexed sensing of ions with barcoded polyelectrolyte capsules
ACS Nano, ISSN: 1936-0851, Vol: 5, Issue: 12, Page: 9668-9674
2011
- 96Citations
- 67Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations96
- Citation Indexes96
- 96
- CrossRef90
- Captures67
- Readers67
- 67
Article Description
Multiplexed detection of analytes is a challenge for numerous medical and biochemical applications. Many fluorescent particulate devices are being developed as ratiometric optical sensors to measure the concentration of intracellular analytes. The response of these sensors is based on changes of the emission intensity of analyte-sensitive probes, entrapped into the carrier system, which depends on the concentration of a specific analyte. However, there are a series of technical limits that prevent their use for quantitative detection of several analytes in parallel (e.g., emission crosstalk between different sensor molecules). Here we demonstrate that double-wall barcoded sensor capsules can be used for multiplexed analysis of proton, sodium, and potassium ions. The sensor detection methodology is based on porous microcapsules which carry ion-sensitive probes in their inner cavity for ion detection and a unique QD barcode in their outermost wall as tag for identification of individual sensors. The engineering of QD barcodes to capsules walls represents a promising strategy for optical multianalyte determination. © 2011 American Chemical Society.
Bibliographic Details
American Chemical Society (ACS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know