Quantitative thermal imaging of single-walled carbon nanotube devices by scanning Joule expansion microscopy
ACS Nano, ISSN: 1936-0851, Vol: 6, Issue: 11, Page: 10267-10275
2012
- 23Citations
- 83Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Electrical generation of heat in single-walled carbon nanotubes (SWNTs) and subsequent thermal transport into the surroundings can critically affect the design, operation, and reliability of electronic and optoelectronic devices based on these materials. Here we investigate such heat generation and transport characteristics in perfectly aligned, horizontal arrays of SWNTs integrated into transistor structures. We present quantitative assessments of local thermometry at individual SWNTs in these arrays, evaluated using scanning Joule expansion microscopy. Measurements at different applied voltages reveal electronic behaviors, including metallic and semiconducting responses, spatial variations in diameter or chirality, and localized defect sites. Analytical models, validated by measurements performed on different device structures at various conditions, enable accurate, quantitative extraction of temperature distributions at the level of individual SWNTs. Using current equipment, the spatial resolution and temperature precision are as good as ∼100 nm and ∼0.7 K, respectively. © 2012 American Chemical Society.
Bibliographic Details
American Chemical Society (ACS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know