Dependence of surface facet period on the diameter of nanowires
ACS Nano, ISSN: 1936-0851, Vol: 4, Issue: 2, Page: 632-636
2010
- 11Citations
- 23Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations11
- Citation Indexes11
- 11
- CrossRef10
- Captures23
- Readers23
- 23
Conference Paper Description
Axial heterostructured silicon nanowires with varying n- and p-doping were synthesized using a vapor-liquid-solid approach. The nanowire sidewalls exhibit periodic nanofaceting in the silicon deposited directly on the sidewalls when diborane dopant gas is introduced during growth. For such nanofaceting, a model predicting the distance between facets (the facet period) is developed. For a nanowire structure, an extra energy cost term arising from the formation of apexes between facets is considered, and the facet size is predicted to decrease as the wire diameter increases. It is found that the model fits the experimental data well, and the fitted parameters in the model lie within the ranges of their expected values. © 2010 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know