Synthesis of p-aminophenol by catalytic hydrogenation of p-nitrophenol
Organic Process Research and Development, ISSN: 1083-6160, Vol: 7, Issue: 2, Page: 202-208
2003
- 291Citations
- 142Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated in a laboratory-scale batch-slurry reactor. Pt/C catalyst (1%) was chosen for optimization of reaction conditions and kinetic studies because of its higher catalytic activity compared to that of other heterogeneous transition metal catalysts. The average catalytic activity and initial rate of hydrogenation was found to increase with increase in the solvent polarity. To investigate the intrinsic kinetics of the reaction, the effect of catalyst loading, agitation speed, p-nitrophenol concentration, and hydrogen partial pressure on the initial rate of hydrogenation was studied at different temperatures. The analysis of initial rate data indicated that the mass-transfer resistances were not significant under the prevailing reaction conditions. A simple Langmuir-Hinschelwood (L-H)-type model was found to represent the kinetics of hydrogenation of p-nitrophenol to p-aminophenol satisfactorily. The apparent energy of activation was found to be 61 kJ/mol.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know