The disruption of hepatic cytochrome P450 reductase alters mouse lipid metabolism
Journal of Proteome Research, ISSN: 1535-3893, Vol: 6, Issue: 10, Page: 3976-3984
2007
- 22Citations
- 24Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations22
- Citation Indexes22
- CrossRef22
- 22
- Captures24
- Readers24
- 24
Article Description
To elucidate the role of hepatic cytochrome P450 oxidoreductase (POR) in lipid metabolism, we characterized perturbations in lipid homeostasis in a mouse model deficient in liver POR. Using an integrative approach in which transcriptomics, lipidomics, and various bioinformatic algorithms were employed, a disruption in liver lipid mobilization, oxidation, and electron transport functions were identified. Analyzing the promoters of genes in these biological processes identified common binding motifs for nuclear receptors sensitive to lipid status, while Srebp-1c binding sites were only identified in genes involved in lipid metabolism. POR-null mice had drastic increases in hepatic lipid content (diacylglycerols, triacylglycerols, phosphatidylcholine, and cholesterol esters) and a specific enrichment in n-7 and n-9 monounsaturated fatty acids (FAs). It was found that while transporters involved in peroxisomal FA oxidation were induced, mitochondrial oxidation appeared to be more tightly controlled, supporting the increase in monounsaturated FAs. Genes coding for hepatic transporters were differentially expressed, where lipid uptake was induced and efflux repressed, indicating that in the absence of hepatic POR the liver serves as a lipid reservoir. Furthermore, while significant changes in intestinal gene expression were found in POR-deficient mice, only minor changes to plasma and intestinal lipid content were observed. Thus, while liver POR plays an important role regulating gene expression and lipid metabolism locally, the hepatic deficiency of this enzyme reverberates throughout the biological system and produces a coordinated response to the low levels of circulating cholesterol and bile. © 2007 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know