Metabolic flux analysis and visualization
Journal of Proteome Research, ISSN: 1535-3893, Vol: 10, Issue: 8, Page: 3313-3323
2011
- 27Citations
- 163Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations27
- Citation Indexes27
- CrossRef27
- 25
- Captures163
- Readers163
- 163
Article Description
One of the ultimate goals of systems biology research is to obtain a comprehensive understanding of the control mechanisms of complex cellular metabolisms. Metabolic Flux Analysis (MFA) is a important method for the quantitative estimation of intracellular metabolic flows through metabolic pathways and the elucidation of cellular physiology. The primary challenge in the use of MFA is that many biological networks are underdetermined systems; it is therefore difficult to narrow down the solution space from the stoichiometric constraints alone. In this tutorial, we present an overview of Flux Balance Analysis (FBA) and C-Metabolic Flux Analysis ( C-MFA), both of which are frequently used to solve such underdetermined systems, and we demonstrate FBA and C-MFA using the genome-scale model and the central carbon metabolism model, respectively. Furthermore, because such comprehensive study of intracellular fluxes is inherently complex, we subsequently introduce various pathway mapping and visualization tools to facilitate understanding of these data in the context of the pathways. Specific visualization of MFA results using the BioCyc Omics Viewer and Pathway Projector are shown as illustrative examples. © 2011 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know