Charge storage accessibility factor as a parameter determining the capacitive performance of nanoporous carbon-based supercapacitors
ACS Sustainable Chemistry and Engineering, ISSN: 2168-0485, Vol: 1, Issue: 8, Page: 1024-1032
2013
- 35Citations
- 23Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Composites of commercial graphene and polymer-derived nanoporous carbons were activated with KOH and CO to increase the porosity. The materials are characterized using the adsorption of nitrogen, SEM/EDX, and potentiometric titration. Their electrochemical performance was measured in two and three electrode cells in HSO as an electrolyte. Activation results in a significant increase in the capacitance owing to the development of porosity and an increase in the surface oxygen content. To account for the beneficial effect of the volume of pores smaller than 0.7 nm on the double layer capacitance and of surface wettability on ion transfer to these pores, a charge storage accessibility factor, CSAF, was proposed as a product of the volume of pores smaller than 0.7 nm and surface oxygen content. The results indicate that there is a dependence between CSAF and the energy storage in carbon-based supercapacitors provided that the electrical double layer capacitance in small pores is the predominant mechanism of charge storage. © 2013 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know