Low-power adaptive biased integrated amplifiers
Analog Integrated Circuits and Signal Processing, ISSN: 0925-1030, Vol: 33, Issue: 3, Page: 249-262
2002
- 9Citations
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this paper the author will present the working principle and the applications of a novel adaptive biasing topology, designed to decrease the stand-by power dissipation without affecting the transient performance of low-power amplifiers. The proposed circuit, whose principle and circuit topology can be implemented both in CMOS and in bipolar standard technologies, gives a biasing current whose value depends on the applied input differential voltage and can be set according to the requested transient performance constraints. The adaptive architecture can be utilized in the design of high-efficient low-power operational amplifiers, for the biasing of both the input stage (where the input source current is dynamically increased) and the output stage (where the output current can be controlled and limited). These amplifiers show a very good behaviour, evaluated in terms of two efficiency factors, if compared with those of other adaptive solutions and class-AB topologies, proposed in the literature. Simulation results and also measurements on a chip prototype, fabricated in a standard CMOS technology, are finally presented.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=0036893358&origin=inward; http://dx.doi.org/10.1023/a:1020765812871; http://link.springer.com/10.1023/A:1020765812871; http://dx.doi.org/10.1023/a%3A1020765812871; https://dx.doi.org/10.1023/a%3A1020765812871; https://link.springer.com/article/10.1023/A:1020765812871
Springer Nature
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know