A Parametric Numerical Analysis of Factors Controlling Ground Ruptures Caused by Groundwater Pumping
Water Resources Research, ISSN: 1944-7973, Vol: 55, Issue: 11, Page: 9500-9518
2019
- 11Citations
- 11Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A modeling analysis is used to investigate the relative susceptibility of various hydrogeologic configurations to aseismic rupture generation due to deformation of aquifer systems accompanying groundwater pumping. An advanced numerical model (GEPS3D) is used to simulate rupture generation and propagation for three typical processes: (i) reactivation of a preexisting fault, (ii) differential compaction due to variations in thickness of aquifer/aquitard layers constituting the aquifer system, and (iii) tensile fracturing above a bedrock ridge that forms the base of the aquifer system. A sensitivity analysis is developed to address the relative importance of various factors, including aquifer depletion, aquifer thickness, the possible uneven distribution and depth below land surface of the aquifer/aquitard layers susceptible to aquifer-system compaction, and the height of bedrock ridges beneath the aquifer system which contributes to thinning of the aquifer system. The rupture evolution is classified in two occurrences. In one, the rupture develops at either the top of the aquifer or at land surface and does not propagate. In the other, the developed rupture propagates from the aquifer top toward the land surface and/or from the land surface downward. The aquifer depth is the most important factor controlling rupture evolution. Specifically, the probability of a significant rupture propagation is higher when the aquifer top is near land surface. The numerical results are processed by a statistical regression analysis to provide a general methodology for a preliminary evaluation of possible ruptures development in exploited aquifer systems susceptible to compaction and accompanying land subsidence. A comparison with a few representative case studies in Arizona, USA, China, and Mexico supports the study outcomes.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know