Imbalanced Regressive Neural Network Model for Whistler-Mode Hiss Waves: Spatial and Temporal Evolution
Journal of Geophysical Research: Space Physics, ISSN: 2169-9402, Vol: 129, Issue: 8
2024
- 1Citations
- 4Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Reports from University of Colorado Provide New Insights into Networks (Imbalanced Regressive Neural Network Model for Whistler-mode Hiss Waves: Spatial and Temporal Evolution)
2024 SEP 04 (NewsRx) -- By a News Reporter-Staff News Editor at Network Daily News -- A new study on Networks is now available. According
Article Description
Whistler-mode hiss waves are crucial to the dynamics of Earth's radiation belts, particularly in the scattering and loss of energetic electrons and forming the slot region between the inner and outer belts. The generation of hiss waves involves multiple potential mechanisms, which are under active research. Understanding the role of hiss waves in radiation belt dynamics and their generation mechanisms requires analyzing their temporal and spatial evolutions, especially for strong hiss waves. Therefore, we developed an Imbalanced Regressive Neural Network (IR-NN) model for predicting hiss amplitudes. This model addresses the challenge posed by the data imbalance of the hiss data set, which consists of predominantly quiet-time background samples and fewer but significant active-time intense hiss samples. Notably, the IR-NN hiss model excels in predicting strong hiss waves (>100 pT). We investigate the temporal and spatial evolution of hiss wave during a geomagnetic storm on 24–27 October 2017. We show that hiss waves occur within the nominal plasmapause, and follow its dynamically evolving shape. They exhibit intensifications with 1 and 2 hr timescale similar to substorms but with a noticeable time delay. The intensifications begin near dawn and progress toward noon and afternoon. During the storm recovery phase, hiss intensifications may occur in the plume. Additionally, we observe no significant latitudinal dependence of the hiss waves within |MLAT| < 20°. In addition to describing the spatiotemporal evolution of hiss waves, this study highlights the importance of imbalanced regressive methods, given the prevalence of imbalanced data sets in space physics and other real-world applications.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know