Budding from Golgi membranes requires the coatomer complex of non-clathrin coat proteins
Nature, ISSN: 0028-0836, Vol: 362, Issue: 6421, Page: 648-652
1993
- 145Citations
- 43Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations145
- Citation Indexes145
- 145
- CrossRef120
- Captures43
- Readers43
- 43
Article Description
Do the coats on vesicles budded from the Golgi apparatus actually cause the budding, or do they simply coat buds (Fig. 1)? One view (the membrane-mediated budding hypothesis) is that budding is an intrinsic property of Golgi membranes not requiring extrinsic coat proteins. Assembly of coats from dispersed subunits is superimposed upon the intrinsic budding process and is proposed to convert the tips of tubules into vesicles. The alternative view (the coat-mediated budding hypothesis) is that coat formation provides the essential driving force for budding. The membrane-mediated budding hypothesis was inspired by the microtubule-dependent extension of apparently uncoated, 90-nm-diameter membrane tubules from the Golgi apparatus and other organelles in vivo after treatment with brefeldin A, a drug that inhibits the assembly of coat proteins onto Golgi membranes . This hypothesis predicts that tubules will be extended when coat proteins are unavailable to convert tubule-derived membrane into vesicles. Here we use a cell-free system in which coated vesicles are formed from Golgi cisternae to show that, on the contrary, when budding diminishes as a result of immunodepletion of coat protein pools, tubules are not formed at the expense of vesicles. We conclude that coat proteins are required for budding from Golgi membranes. © 1993 Nature Publishing Group.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know