Au/NiP core/shell nanocrystals from bimetallic heterostructures: In situ synthesis, evolution and supercapacitor properties
NPG Asia Materials, ISSN: 1884-4057, Vol: 6, Issue: 9, Page: e122-null
2014
- 80Citations
- 57Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A synthetic route to achieve core/shell nanostructures consisting of noble metal cores and single crystal semiconductor shells with different crystal systems is proposed, which involves a simple phosphorization process from corresponding bimetallic heterostructures. The triphenylphosphine is designed to serve as both a capping agent and a phosphorous source during the formation of Au/NiP core/shell nanoparticles (NPs) from Au-Ni bimetallic heterodimers. The semiconductor shells of the obtained Au/NiP nanostructures are controlled to form single crystals with a thickness of B5 nm. The structure-dependent supercapacitor properties of Au-modified NiP nanostructures were further investigated. The synergistic effect of the metal/semiconductor nanostructure is observed to be superior to its oligomer-like counterpart when serving as a supercapacitor electrode. The specific capacitance of an electrode fabricated from core/shell NPs is 806.1 F g with a retention of 91.1% after 500 charge-discharge cycles.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know