Selective autophagy in budding yeast
Cell Death and Differentiation, ISSN: 1350-9047, Vol: 20, Issue: 1, Page: 43-48
2013
- 91Citations
- 164Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations91
- Citation Indexes91
- 91
- CrossRef86
- Captures164
- Readers164
- 164
Review Description
Autophagy is a bulk degradation system, widely conserved in eukaryotes. Upon starvation, autophagosomes enclose a portion of the cytoplasm and ultimately fuse with the vacuole. The contents of autophagosomes are degraded in the vacuole, and recycled to maintain the intracellular amino-acid pool required for protein synthesis and survival under starvation conditions. Previously, autophagy was thought to be an essentially nonselective pathway, but recent evidence suggests that autophagosomes carry selected cargoes. These studies have identified two categories of selective autophagy-one highly selective and dependent on autophagy-related 11 (Atg11); another, less selective, that is, independent of Atg11. The former, selective category comprises the Cvt pathway, mitophagy, pexophagy and piecemeal microautophagy of the nucleus; acetaldehyde dehydrogenase 6 degradation and ribophagy belong to the latter, less selective category. In this review, I focus on the mechanisms and the physiological roles of these selective types of autophagy. © 2013 Macmillan Publishers Limited All rights reserved.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know