Structure of the catalytic domain of human phosphodiesterase 5 with bound drug molecules
Nature, ISSN: 0028-0836, Vol: 425, Issue: 6953, Page: 98-102
2003
- 252Citations
- 149Captures
- 4Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations252
- Citation Indexes251
- 251
- CrossRef218
- Patent Family Citations1
- Patent Families1
- Captures149
- Readers149
- 149
- Mentions4
- References3
- Wikipedia3
- News Mentions1
- News1
Most Recent News
勃起の化学
こんにちは。Maitotoxinです。私ごとですが、海外大学院の博士課程を修了し、今年2024年4月から日本で社会人を始めました。関東周辺におりますので、もしお会いすることがありましたら、お声がけいただけますと幸いです。 […]
Article Description
Phosphodiesterases (PDEs) are a superfamily of enzymes that degrade the intracellular second messengers cyclic AMP and cyclic GMP. As essential regulators of cyclic nucleotide signalling with diverse physiological functions, PDEs are drug targets for the treatment of various diseases, including heart failure, depression, asthma, inflammation and erectile dysfunction. Of the 12 PDE gene families, cGMP-specific PDE5 carries out the principal cGMP-hydrolysing activity in human corpus cavernosum tissue. It is well known as the target of sildenafil citrate (Viagra) and other similar drugs for the treatment of erectile dysfunction. Despite the pressing need to develop selective PDE inhibitors as therapeutic drugs, only the cAMP-specific PDE4 structures are currently available. Here we present the three-dimensional structures of the catalytic domain (residues 537-860) of human PDE5 complexed with the three drug molecules sildenafil, tadalafil (Cialis) and vardenafil (Levitra). These structures will provide opportunities to design potent and selective PDE inhibitors with improved pharmacological profiles.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know