Generation of catalytic RNAs by rolling transcription of synthetic DNA Nanocircles
Nature Biotechnology, ISSN: 1546-1696, Vol: 15, Issue: 3, Page: 273-277
1997
- 69Citations
- 45Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations69
- Citation Indexes67
- 67
- CrossRef60
- Patent Family Citations2
- 2
- Captures45
- Readers45
- 45
Article Description
Small catalytic RNAs are commonly produced either by transcription of promoter-driven linear DNA templates or by stepwise chemical synthesis on solid supports. We describe a different approach, in which very small chemically synthesized circular DNAs serve as efficient templates for generation of catalytic RNAs in vitro. The circles are 83 nucleotides in size, are single stranded, and contain no canonical RNA polymerase promoters. Despite this, T7 and Escherichia coli RNA polymerases transcribe the circles by a rolling mechanism, producing long concatemeric RNAs (~7, 500 nt). During the transcription reaction, the repeating RNAs self-cleave, ultimately reaching monomer length. Despite having self-complementary sequences at their substrate-binding domains, these monomeric 83-nt RNAs are shown to be catalytically active ribozymes that sequence-specifically cleave RNA targets in trans. In addition, a circular vector encoding a repeating (non-self-processing) ribozyme is described; the resulting multimene ribozyme, targeted to a sequence in the HIV-1 genome, is also catalytically active in trans. This novel approach to the synthesis of catalytic RNAs offers a number of differences and potential advantages over current approaches to RNA synthesis. © 1997 Nature Publishing Group.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know