Chemical potential oscillations from nodal Fermi surface pocket in the underdoped high-temperature superconductor YBa Cu O
Nature Communications, ISSN: 2041-1723, Vol: 2, Issue: 1, Page: 471
2011
- 26Citations
- 29Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations26
- Citation Indexes26
- 26
- CrossRef23
- Captures29
- Readers29
- 29
Article Description
The electronic structure of the normal state of the underdoped cuprates has thus far remained mysterious, with neither the momentum space location nor the charge carrier type of constituent small Fermi surface pockets being resolved. Whereas quantum oscillations have been interpreted in terms of a nodal-antinodal Fermi surface including electrons at the antinodes, photoemission indicates a solely nodal density-of-states at the Fermi level. Here we examine both these possibilities using extended quantum oscillation measurements. Second harmonic quantum oscillations in underdoped YBa Cu O are shown to arise chiefly from oscillations in the chemical potential. We show from the relationship between the phase and amplitude of the second harmonic with that of the fundamental quantum oscillations that there exists a single carrier Fermi surface pocket, likely located at the nodal region of the Brillouin zone, with the observed multiple frequencies arising from warping, bilayer splitting and magnetic breakdown. © 2011 Macmillan Publishers Limited. All rights reserved.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know