PlumX Metrics
Embed PlumX Metrics

Fcp1-dependent dephosphorylation is required for M-phase-promoting factor inactivation at mitosis exit

Nature Communications, ISSN: 2041-1723, Vol: 3, Issue: 1, Page: 894
2012
  • 52
    Citations
  • 0
    Usage
  • 76
    Captures
  • 3
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Correct execution of mitosis in eukaryotes relies on timely activation and inactivation of cyclin B-dependent kinase 1 (cdk1), the M-phase-promoting factor (MPF). Once activated, MPF is sustained until mitotic spindle assembly by phosphorylation-dependent feedback loops that prevent inhibitory phosphorylation of cdk1 and ubiquitin-dependent degradation of cyclin B. Whether subsequent MPF inactivation and anaphase onset require a specific phosphatase(s) to reverse these feedback loops is not known. Here we show through biochemical and genetic evidence that timely MPF inactivation requires activity of the essential RNA polymerase II-carboxy-terminal domain phosphatase Fcp1, in a transcription-independent manner. We identify Cdc20, a coactivator of the ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C) required for cyclin degradation and anaphase onset, USP44, a deubiquitinating peptidase that opposes APC/C action, and Wee1, a cdk1 inhibitory kinase, as relevant Fcp1 targets. We propose that Fcp1 has a crucial role in the liaison between dephosphorylation and ubiquitination that drives mitosis exit. © 2012 Macmillan Publishers Limited. All rights reserved.

Bibliographic Details

Visconti, Roberta; Palazzo, Luca; Della Monica, Rosa; Grieco, Domenico

Springer Science and Business Media LLC

Chemistry; Biochemistry, Genetics and Molecular Biology; Physics and Astronomy

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know