Disruption of a proto-planetary disc by the black hole at the milky way centre
Nature Communications, ISSN: 2041-1723, Vol: 3, Issue: 1, Page: 1049
2012
- 66Citations
- 30Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations66
- Citation Indexes66
- 66
- CrossRef46
- Captures30
- Readers30
- 30
- Mentions1
- News Mentions1
- 1
Most Recent News
Planets Can Form in the Galactic Center
The Harvard-Smithsonian Center for Astrophysics issued the following news release: At first glance, the center of the Milky Way seems like a very inhospitable place
Article Description
Recently, an ionized cloud of gas was discovered plunging towards the supermassive black hole, SgrA*, at the centre of the Milky Way. The cloud is being tidally disrupted along its path to closest approach at ∼3,100 Schwarzschild radii from the black hole. Here we show that the observed properties of this cloud of gas can naturally be produced by a proto-planetary disc surrounding a low-mass star, which was scattered from the observed ring of young stars orbiting SgrA*. As the young star approaches the black hole, its disc experiences both photoevaporation and tidal disruption, producing a cloud. Our model implies that planets form in the Galactic centre, and that tidal debris from proto-planetary discs can flag low-mass stars, which are otherwise too faint to be detected. © 2012 Macmillan Publishers Limited. All rights reserved.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know