A flexible interpenetrating coordination framework with a bimodal porous functionality
Nature Materials, ISSN: 1476-4660, Vol: 6, Issue: 2, Page: 142-148
2007
- 728Citations
- 174Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations728
- Citation Indexes728
- 728
- CrossRef698
- Captures174
- Readers174
- 174
Article Description
Introducing a functional part into open-framework materials that tunes the pore size/shape and overall porous activity will open new routes in framework engineering and in the fabrication of new materials. We have designed and synthesized a bimodal microporous twofold interpenetrating network [Ni(bpe)"2(N(CN)"2)](N(CN)"2)(5H"2O)(n) (1), with two types of channel for anionic N(CN)"2 (dicyanamide) and neutral water molecules, respectively. The dehydrated framework provides a dual function of specific anion exchange of free N(CN)"2 for the smaller N"3 anions and selective gas sorption. The N"3-exchanged framework leads to a dislocation of the mutual positions of the two interpenetrating frameworks, resulting in an increase in the effective pore size in one of the counterparts of the channels and a higher accommodation of adsorbate than in the as-synthesized framework (1), showing the first case of controlled sorption properties in flexible porous frameworks. © 2007 Nature Publishing Group.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know