TRPA1 mediates sensation of the rate of temperature change in Drosophila larvae
Nature Neuroscience, ISSN: 1546-1726, Vol: 20, Issue: 1, Page: 34-41
2017
- 78Citations
- 152Captures
- 2Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations78
- Citation Indexes78
- CrossRef78
- 69
- Captures152
- Readers152
- 152
- Mentions2
- News Mentions2
- News2
Most Recent News
Biologists uncover molecular mechanism that regulates animal's ability to sense the rate of temperature change
In classic experiments on frogs, scientists found that the amphibians' urge to escape from dangerously hot water decreased significantly when the water temperature rose very gradually.
Article Description
Avoidance of noxious ambient heat is crucial for survival. A well-known phenomenon is that animals are sensitive to the rate of temperature change. However, the cellular and molecular underpinnings through which animals sense and respond much more vigorously to fast temperature changes are unknown. Using Drosophila larvae, we found that nociceptive rolling behavior was triggered at lower temperatures and at higher frequencies when the temperature increased rapidly. We identified neurons in the brain that were sensitive to the speed of the temperature increase rather than just to the absolute temperature. These cellular and behavioral responses depended on the TRPA1 channel, whose activity responded to the rate of temperature increase. We propose that larvae use low-threshold sensors in the brain to monitor rapid temperature increases as a protective alert signal to trigger rolling behaviors, allowing fast escape before the temperature of the brain rises to dangerous levels.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know