Metabolism and regulation of canonical histone mRNAs: Life without a poly(A) tail
Nature Reviews Genetics, ISSN: 1471-0056, Vol: 9, Issue: 11, Page: 843-854
2008
- 568Citations
- 729Captures
- 9Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations568
- Citation Indexes566
- 566
- CrossRef553
- Patent Family Citations2
- Patent Families2
- Captures729
- Readers729
- 729
- Mentions9
- References8
- Wikipedia8
- News Mentions1
- News1
Most Recent News
Single-cell nascent RNA sequencing unveils coordinated global transcription
Nature, Published online: 05 June 2024; doi:10.1038/s41586-024-07517-7 Nascent transcription in genes and enhancers genome-wide at the single-cell level is quantified using global run-on and sequencing (GRO–seq) with click chemistry.
Review Description
The canonical histone proteins are encoded by replication-dependent genes and must rapidly reach high levels of expression during S phase. In metazoans the genes that encode these proteins produce mRNAs that, instead of being polyadenylated, contain a unique 3′ end structure. By contrast, the synthesis of the variant, replication-independent histones, which are encoded by polyadenylated mRNAs, persists outside of S phase. Accurate positioning of both histone types in chromatin is essential for proper transcriptional regulation, the demarcation of heterochromatic boundaries and the epigenetic inheritance of gene expression patterns. Recent results suggest that the coordinated synthesis of replication-dependent and variant histone mRNAs is achieved by signals that affect formation of the 3′ end of the replication-dependent histone mRNAs. © 2008 Macmillan Publishers Limited. All rights reserved.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know