Deep learning for small and big data in psychiatry
Neuropsychopharmacology, ISSN: 1740-634X, Vol: 46, Issue: 1, Page: 176-190
2021
- 119Citations
- 259Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations119
- Citation Indexes119
- 119
- CrossRef102
- Captures259
- Readers259
- 259
Article Description
Psychiatry today must gain a better understanding of the common and distinct pathophysiological mechanisms underlying psychiatric disorders in order to deliver more effective, person-tailored treatments. To this end, it appears that the analysis of ‘small’ experimental samples using conventional statistical approaches has largely failed to capture the heterogeneity underlying psychiatric phenotypes. Modern algorithms and approaches from machine learning, particularly deep learning, provide new hope to address these issues given their outstanding prediction performance in other disciplines. The strength of deep learning algorithms is that they can implement very complicated, and in principle arbitrary predictor-response mappings efficiently. This power comes at a cost, the need for large training (and test) samples to infer the (sometimes over millions of) model parameters. This appears to be at odds with the as yet rather ‘small’ samples available in psychiatric human research to date (n < 10,000), and the ambition of predicting treatment at the single subject level (n = 1). Here, we aim at giving a comprehensive overview on how we can yet use such models for prediction in psychiatry. We review how machine learning approaches compare to more traditional statistical hypothesis-driven approaches, how their complexity relates to the need of large sample sizes, and what we can do to optimally use these powerful techniques in psychiatric neuroscience.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know