Elevated mitochondrial SLC25A29 in cancer modulates metabolic status by increasing mitochondria-derived nitric oxide
Oncogene, ISSN: 1476-5594, Vol: 37, Issue: 19, Page: 2545-2558
2018
- 22Citations
- 24Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations22
- Citation Indexes22
- 22
- CrossRef13
- Captures24
- Readers24
- 24
Article Description
Warburg effect has been recognized as a hallmark of cancer cells for many years, but its modulation mechanism remains a great focus. Our current study found a member of solute carrier family 25 (SLC25A29), the main arginine transporter on mitochondria, significantly elevated in various cancer cells. Knockout of SLC25A29 by CRISPR/Cas9 inhibited proliferation and migration of cancer cells both in vitro and in vivo. SLC25A29-knockout cells also showed an altered metabolic status with enhanced mitochondrial respiration and reduced glycolysis. All of above impacts could be reversed after rescuing SLC25A29 expression in SLC25A29-knockout cells. Arginine is transported into mitochondria partly for nitric oxide (NO) synthesis. Deletion of SLC25A29 resulted in severe decrease of NO production, indicating that the mitochondria is a significant source of NO. SLC25A29-knockout cells dramatically altered the variation of metabolic processes, whereas addition of arginine failed to reverse the effect, highlighting the necessity of transporting arginine into mitochondria by SLC25A29. In conclusion, aberrant elevated SLC25A29 in cancer functioned to transport more arginine into mitochondria, improved mitochondria-derived NO levels, thus modulated metabolic status to facilitate increased cancer progression.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know