Hesperadin suppresses pancreatic cancer through ATF4/GADD45A axis at nanomolar concentrations
Oncogene, ISSN: 1476-5594, Vol: 41, Issue: 25, Page: 3394-3408
2022
- 11Citations
- 9Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations11
- Citation Indexes11
- 11
- Captures9
- Readers9
Article Description
Pancreatic cancer (PC) is a fatal disease with poor survival and limited therapeutic strategies. In this study, we identified Hesperadin as a potent anti-cancer compound against PC, from a high-throughput screening of a commercial chemical library associated with cell death. Hesperadin induced potent growth inhibition in PC cell lines and patient-derived tumor organoids in a dose- and time-dependent manner, with IC values in the nanomolar range. Cellular studies showed that Hesperadin caused mitochondria damage in PC cells, resulting in reactive oxygen species production, ER stress and apoptotic cell death. Transcriptomic analysis using RNA-sequencing data identified GADD45A as a potential target of Hesperadin. Mechanistic studies showed that Hesperadin could increase GADD45A expression in PC cells via ATF4, leading to apoptosis. Moreover, immunohistochemical staining of 92 PC patient samples demonstrated the correlation between ATF4 and GADD45A expression. PC xenograft studies demonstrated that Hesperadin could effectively inhibit the growth of PC cells in vivo. Together, these findings suggest that Hesperadin is a novel drug candidate for PC.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know