The genetic basis of female pheromone differences between Drosophila melanogaster and D. simulans
Heredity, ISSN: 1365-2540, Vol: 122, Issue: 1, Page: 93-109
2019
- 18Citations
- 32Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations18
- Citation Indexes18
- 18
- CrossRef14
- Captures32
- Readers32
- 32
Article Description
Chemical signals are one means by which many insect species communicate. Differences in the combination of surface chemicals called cuticular hydrocarbons (CHCs) can influence mating behavior and affect reproductive isolation between species. Genes influencing three CHC compounds have been identified in Drosophila melanogaster. However, the genetic basis of other CHC compounds, whether these genes affect species differences in CHCs, and the genes’ resulting effect on interspecies mating, remains unknown. We used fine-scale deficiency mapping of the third chromosome to identify 43 genomic regions that influence production of CHCs in both D. melanogaster and Drosophila simulans females. We identified an additional 23 small genomic regions that affect interspecies divergence in CHCs between females of these two species, one of which spans two genes known to influence the production of multiple CHCs within D. melanogaster. By testing these genes individually, we determined that desat1 also affects interspecific divergence in one CHC compound, while desat2 has no effect on interspecific divergence. Thus, some but not all genes affecting intraspecific amounts of CHCs also affect interspecific divergence, but not all genes or all CHCs. Lastly, we find no evidence of a relationship between the CHC profile and female attractiveness or receptivity towards D. melanogaster males.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know