Future possibilities for artificial intelligence in the practical management of hypertension
Hypertension Research, ISSN: 1348-4214, Vol: 43, Issue: 12, Page: 1327-1337
2020
- 25Citations
- 108Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations25
- Citation Indexes25
- 25
- CrossRef12
- Captures108
- Readers108
- 108
Review Description
The use of artificial intelligence in numerous prediction and classification tasks, including clinical research and healthcare management, is becoming increasingly more common. This review describes the current status and a future possibility for artificial intelligence in blood pressure management, that is, the possibility of accurately predicting and estimating blood pressure using large-scale data, such as personal health records and electronic medical records. Individual blood pressure continuously changes because of lifestyle habits and the environment. This review focuses on two topics regarding controlling changing blood pressure: a novel blood pressure measurement system and blood pressure analysis using artificial intelligence. Regarding the novel blood pressure measurement system, we compare the conventional cuff-less method with the analysis of pulse waves using artificial intelligence for blood pressure estimation. Then, we describe the prediction of future blood pressure values using machine learning and deep learning. In addition, we summarize factor analysis using “explainable AI” to solve a black-box problem of artificial intelligence. Overall, we show that artificial intelligence is advantageous for hypertension management and can be used to establish clinical evidence for the practical management of hypertension.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know