Van der Waals epitaxial growth and optoelectronics of large-scale WSe/SnS vertical bilayer p-n junctions
Nature Communications, ISSN: 2041-1723, Vol: 8, Issue: 1, Page: 1906
2017
- 406Citations
- 196Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations406
- Citation Indexes406
- 406
- CrossRef294
- Captures196
- Readers196
- 196
- Mentions1
- News Mentions1
- News1
Most Recent News
Stack growth of wafer-scale van der Waals superconductor heterostructures
Nature, Published online: 06 September 2023; doi:10.1038/s41586-023-06404-x Stacks of van der Waals superconductor heterostructures comprising many layers and several blocks of two-dimensional materials have been grown in a highly controllable manner at a wafer scale using a high-to-low temperature strategy.
Article Description
High-quality two-dimensional atomic layered p-n heterostructures are essential for high-performance integrated optoelectronics. The studies to date have been largely limited to exfoliated and restacked flakes, and the controlled growth of such heterostructures remains a significant challenge. Here we report the direct van der Waals epitaxial growth of large-scale WSe/SnS vertical bilayer p-n junctions on SiO/Si substrates, with the lateral sizes reaching up to millimeter scale. Multi-electrode field-effect transistors have been integrated on a single heterostructure bilayer. Electrical transport measurements indicate that the field-effect transistors of the junction show an ultra-low off-state leakage current of 10 A and a highest on-off ratio of up to 10. Optoelectronic characterizations show prominent photoresponse, with a fast response time of 500 μs, faster than all the directly grown vertical 2D heterostructures. The direct growth of high-quality van der Waals junctions marks an important step toward high-performance integrated optoelectronic devices and systems.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know