Dehydrative π-extension to nanographenes with zig-zag edges
Nature Communications, ISSN: 2041-1723, Vol: 9, Issue: 1, Page: 4756
2018
- 63Citations
- 93Captures
- 12Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations63
- Citation Indexes63
- 63
- CrossRef47
- Captures93
- Readers93
- 93
- Mentions12
- News Mentions10
- 10
- Blog Mentions2
- 2
Most Recent Blog
Graphene research Breakthrough - Graphene produced with unique edge pattern - Crucial step toward using Graphene for 'Nanoelectronic components'
Different patterns are formed at the edges of nanographene. Zigzags are particularly interesting — and particularly unstable. FAU researchers have now succeeded in creating stable
Most Recent News
Researchers wild about zigzags
Their research, conducted within the framework of collaborative research centre 953 - Synthetic Carbon Allotropes at Friedrich-Alexander-Universitat Erlangen-Nurnberg (FAU) funded by the German Research Foundation
Article Description
Zig-zag nanographenes are promising candidates for the applications in organic electronics due to the electronic properties induced by their periphery. However, the synthetic access to these compounds remains virtually unexplored. There is a lack in efficient and mild strategies origins in the reduced stability, increased reactivity, and low solubility of these compounds. Herein we report a facile access to pristine zig-zag nanographenes, utilizing an acid-promoted intramolecular reductive cyclization of arylaldehydes, and demonstrate a three-step route to nanographenes constituted of angularly fused tetracenes or pentacenes. The mild conditions are scalable to gram quantities and give insoluble nanostructures in close to quantitative yields. The strategy allows the synthesis of elusive low bandgap nanographenes, with values as low as 1.62 eV. Compared to their linear homologues, the structures have an increased stability in the solid-state, even though computational analyses show distinct diradical character. The structures were confirmed by X–ray diffraction or scanning tunneling microscopy.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know