PlumX Metrics
Embed PlumX Metrics

Artificially decreasing cortical tension generates aneuploidy in mouse oocytes

Nature Communications, ISSN: 2041-1723, Vol: 11, Issue: 1, Page: 1649
2020
  • 23
    Citations
  • 0
    Usage
  • 65
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Human and mouse oocytes’ developmental potential can be predicted by their mechanical properties. Their development into blastocysts requires a specific stiffness window. In this study, we combine live-cell and computational imaging, laser ablation, and biophysical measurements to investigate how deregulation of cortex tension in the oocyte contributes to early developmental failure. We focus on extra-soft cells, the most common defect in a natural population. Using two independent tools to artificially decrease cortical tension, we show that chromosome alignment is impaired in extra-soft mouse oocytes, despite normal spindle morphogenesis and dynamics, inducing aneuploidy. The main cause is a cytoplasmic increase in myosin-II activity that could sterically hinder chromosome capture. We describe here an original mode of generation of aneuploidies that could be very common in oocytes and could contribute to the high aneuploidy rate observed during female meiosis, a leading cause of infertility and congenital disorders.

Bibliographic Details

Bennabi, Isma; Crozet, Flora; Nikalayevich, Elvira; Chaigne, Agathe; Letort, Gaëlle; Manil-Ségalen, Marion; Campillo, Clément; Cadart, Clotilde; Othmani, Alice; Attia, Rafaele; Genovesio, Auguste; Verlhac, Marie-Hélène; Terret, Marie-Emilie

Springer Science and Business Media LLC

Chemistry; Biochemistry, Genetics and Molecular Biology; Physics and Astronomy

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know