PlumX Metrics
Embed PlumX Metrics

Interface-mediated spontaneous symmetry breaking and mutual communication between drops containing chemically active particles

Nature Communications, ISSN: 2041-1723, Vol: 11, Issue: 1, Page: 2210
2020
  • 27
    Citations
  • 0
    Usage
  • 39
    Captures
  • 1
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Most Recent News

Drops of nanoparticles self-stir and communicate

Researchers have discovered a new mechanism of self-organization of active matter. When photochemically active nanoparticles are enclosed at high density within a drop and are exposed to UV light, a self-organized flow pattern emerges by spontaneous symmetry breaking. Furthermore, each drop communicates with neighbouring drops by exchanging chemicals, and coordination of their internal flows occur

Article Description

Symmetry breaking and the emergence of self-organized patterns is the hallmark of complexity. Here, we demonstrate that a sessile drop, containing titania powder particles with negligible self-propulsion, exhibits a transition to collective motion leading to self-organized flow patterns. This phenomenology emerges through a novel mechanism involving the interplay between the chemical activity of the photocatalytic particles, which induces Marangoni stresses at the liquid–liquid interface, and the geometrical confinement provided by the drop. The response of the interface to the chemical activity of the particles is the source of a significantly amplified hydrodynamic flow within the drop, which moves the particles. Furthermore, in ensembles of such active drops long-ranged ordering of the flow patterns within the drops is observed. We show that the ordering is dictated by a chemical communication between drops, i.e., an alignment of the flow patterns is induced by the gradients of the chemicals emanating from the active particles, rather than by hydrodynamic interactions.

Bibliographic Details

D. P. Singh; U. Choudhury; S. N. Kottapalli; M. N. Popescu; S. Dietrich; P. Fischer; A. Domínguez

Springer Science and Business Media LLC

Chemistry; Biochemistry, Genetics and Molecular Biology; Physics and Astronomy

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know