Towards brain-tissue-like biomaterials
Nature Communications, ISSN: 2041-1723, Vol: 11, Issue: 1, Page: 3423
2020
- 91Citations
- 193Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations91
- Citation Indexes91
- 91
- CrossRef32
- Captures193
- Readers193
- 193
- Mentions1
- Blog Mentions1
- Blog1
Most Recent Blog
En busca de biomateriales que se asemejen al tejido cerebral
Irati Diez Virto Los biomateriales son substancias creadas para mantenerse en contacto con tejidos o fluidos biológicos. Uno de los biomateriales más habituales y conocidos son los empastes dentales. Sin embargo, el uso de estos materiales va más allá y su campo se amplía al desarrollo de implantes que, por ejemplo, sustituyan articulaciones, reparen órganos o imiten un conjunto de propiedades fís
Article Description
Nature Communications
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know