Turn-key constrained parameter space exploration for particle accelerators using Bayesian active learning
Nature Communications, ISSN: 2041-1723, Vol: 12, Issue: 1, Page: 5612
2021
- 17Citations
- 43Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations17
- Citation Indexes17
- 17
- CrossRef2
- Captures43
- Readers43
- 43
Article Description
Particle accelerators are invaluable discovery engines in the chemical, biological and physical sciences. Characterization of the accelerated beam response to accelerator input parameters is often the first step when conducting accelerator-based experiments. Currently used techniques for characterization, such as grid-like parameter sampling scans, become impractical when extended to higher dimensional input spaces, when complicated measurement constraints are present, or prior information known about the beam response is scarce. Here in this work, we describe an adaptation of the popular Bayesian optimization algorithm, which enables a turn-key exploration of input parameter spaces. Our algorithm replaces the need for parameter scans while minimizing prior information needed about the measurement’s behavior and associated measurement constraints. We experimentally demonstrate that our algorithm autonomously conducts an adaptive, multi-parameter exploration of input parameter space, potentially orders of magnitude faster than conventional grid-like parameter scans, while making highly constrained, single-shot beam phase-space measurements and accounts for costs associated with changing input parameters. In addition to applications in accelerator-based scientific experiments, this algorithm addresses challenges shared by many scientific disciplines, and is thus applicable to autonomously conducting experiments over a broad range of research topics.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know