Mid-lateral cerebellar complex spikes encode multiple independent reward-related signals during reinforcement learning
Nature Communications, ISSN: 2041-1723, Vol: 12, Issue: 1, Page: 6475
2021
- 10Citations
- 45Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations10
- Citation Indexes10
- 10
- CrossRef3
- Captures45
- Readers45
- 45
Article Description
Although the cerebellum has been implicated in simple reward-based learning recently, the role of complex spikes (CS) and simple spikes (SS), their interaction and their relationship to complex reinforcement learning and decision making is still unclear. Here we show that in a context where a non-human primate learned to make novel visuomotor associations, classifying CS responses based on their SS properties revealed distinct cell-type specific encoding of the probability of failure after the stimulus onset and the non-human primate’s decision. In a different context, CS from the same cerebellar area also responded in a cell-type and learning independent manner to the stimulus that signaled the beginning of the trial. Both types of CS signals were independent of changes in any motor kinematics and were unlikely to instruct the concurrent SS activity through an error based mechanism, suggesting the presence of context dependent, flexible, multiple independent channels of neural encoding by CS and SS. This diversity in neural information encoding in the mid-lateral cerebellum, depending on the context and learning state, is well suited to promote exploration and acquisition of wide range of cognitive behaviors that entail flexible stimulus-action-reward relationships but not necessarily motor learning.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know