Effect of Chiral Damping on the dynamics of chiral domain walls and skyrmions
Nature Communications, ISSN: 2041-1723, Vol: 13, Issue: 1, Page: 1192
2022
- 9Citations
- 25Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Friction plays an essential role in most physical processes that we experience in our everyday life. Examples range from our ability to walk or swim, to setting boundaries of speed and fuel efficiency of moving vehicles. In magnetic systems, the displacement of chiral domain walls (DW) and skyrmions (SK) by Spin Orbit Torques (SOT), is also prone to friction. Chiral damping (α), the dissipative counterpart of the Dzyaloshinskii Moriya Interaction (DMI), plays a central role in these dynamics. Despite experimental observation, and numerous theoretical studies confirming its existence, the influence of chiral damping on DW and SK dynamics has remained elusive due to the difficulty of discriminating from DMI. Here we unveil the effect that α has on the flow motion of DWs and SKs driven by current and magnetic field. We use a static in-plane field to lift the chiral degeneracy. As the in-plane field is increased, the chiral asymmetry changes sign. When considered separately, neither DMI nor α can explain the sign reversal of the asymmetry, which we prove to be the result of their competing effects. Finally, numerical modelling unveils the non-linear nature of chiral dissipation and its critical role for the stabilization of moving SKs.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know