Vertical depletion of ophiolitic mantle reflects melt focusing and interaction in sub-spreading-center asthenosphere
Nature Communications, ISSN: 2041-1723, Vol: 13, Issue: 1, Page: 6956
2022
- 15Citations
- 17Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Decompressional melting of asthenosphere under spreading centers has been accepted to produce oceanic lithospheric mantle with vertical compositional variations, but these gradients are much smaller than those observed from ophiolites, which clearly require additional causes. Here we conduct high-density sampling and whole-rock and mineral analyses of peridotites across a Tibetan ophiolitic mantle section (~2 km thick), which shows a primary upward depletion (~12% difference) and local more-depleted anomalies. Thermodynamic modeling demonstrates that these features cannot be produced by decompressional melting or proportional compression of residual mantle, but can be explained by melt-peridotite reaction with lateral melt/rock ratio variations in an upwelling asthenospheric column, producing stronger depletion in the melt-focusing center and local zones. This column splits symmetrically and flows to become the horizontal uppermost lithospheric mantle, characterized by upward depletion and local anomalies. This model provides insights into melt extraction and uppermost-mantle origin beneath spreading centers with high melt fluxes.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know