PlumX Metrics
Embed PlumX Metrics

Spatially aware dimension reduction for spatial transcriptomics

Nature Communications, ISSN: 2041-1723, Vol: 13, Issue: 1, Page: 7203
2022
  • 90
    Citations
  • 9
    Usage
  • 112
    Captures
  • 1
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Most Recent News

University of Michigan Details Findings in Science (Spatially Aware Dimension Reduction for Spatial Transcriptomics)

2022 DEC 30 (NewsRx) -- By a News Reporter-Staff News Editor at NewsRx Science Daily -- Research findings on Science are discussed in a new

Article Description

Spatial transcriptomics are a collection of genomic technologies that have enabled transcriptomic profiling on tissues with spatial localization information. Analyzing spatial transcriptomic data is computationally challenging, as the data collected from various spatial transcriptomic technologies are often noisy and display substantial spatial correlation across tissue locations. Here, we develop a spatially-aware dimension reduction method, SpatialPCA, that can extract a low dimensional representation of the spatial transcriptomics data with biological signal and preserved spatial correlation structure, thus unlocking many existing computational tools previously developed in single-cell RNAseq studies for tailored analysis of spatial transcriptomics. We illustrate the benefits of SpatialPCA for spatial domain detection and explores its utility for trajectory inference on the tissue and for high-resolution spatial map construction. In the real data applications, SpatialPCA identifies key molecular and immunological signatures in a detected tumor surrounding microenvironment, including a tertiary lymphoid structure that shapes the gradual transcriptomic transition during tumorigenesis and metastasis. In addition, SpatialPCA detects the past neuronal developmental history that underlies the current transcriptomic landscape across tissue locations in the cortex.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know