Enhanced multi-year predictability after El Niño and La Niña events
Nature Communications, ISSN: 2041-1723, Vol: 14, Issue: 1, Page: 6387
2023
- 10Citations
- 14Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Research Reports on Science from University of New South Wales (UNSW) Provide New Insights (Enhanced multi-year predictability after El Nino and La Nina events)
2023 NOV 01 (NewsRx) -- By a News Reporter-Staff News Editor at NewsRx Science Daily -- Investigators publish new report on science. According to news
Article Description
Several aspects of regional climate including near-surface temperature and precipitation are predictable on interannual to decadal time scales. Despite indications that some climate states may provide higher predictability than others, previous studies analysing decadal predictions typically sample a variety of initial conditions. Here we assess multi-year predictability conditional on the phase of the El Niño–Southern Oscillation (ENSO) at the time of prediction initialisation. We find that predictions starting with El Niño or La Niña conditions exhibit higher skill in predicting near-surface air temperature and precipitation multiple years in advance, compared to predictions initialised from neutral ENSO conditions. This holds true in idealised prediction experiments with the Community Climate System Model Version 4 and to a lesser extent also real-world predictions using the Community Earth System Model and a multi-model ensemble of hindcasts contributed to the Coupled Model Intercomparison Project Phase 6 Decadal Climate Prediction Project. This enhanced predictability following ENSO events is related to phase transitions as part of the ENSO cycle, and related global teleconnections. Our results indicate that certain initial states provide increased predictability, revealing windows of opportunity for more skillful multi-year predictions.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know