Radiative cooling assisted self-sustaining and highly efficient moisture energy harvesting
Nature Communications, ISSN: 2041-1723, Vol: 15, Issue: 1, Page: 6100
2024
- 23Citations
- 20Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations23
- Citation Indexes23
- 23
- Captures20
- Readers20
- 20
- Mentions1
- News Mentions1
- 1
Most Recent News
Research from Southeast University Provides New Data on Science (Radiative cooling assisted self-sustaining and highly efficient moisture energy harvesting)
2024 AUG 05 (NewsRx) -- By a News Reporter-Staff News Editor at NewsRx Science Daily -- Fresh data on science are presented in a new
Article Description
Harvesting electricity from ubiquitous water vapor represents a promising route to alleviate the energy crisis. However, existing studies rarely comprehensively consider the impact of natural environmental fluctuations on electrical output. Here, we demonstrate a bilayer polymer enabling self-sustaining and highly efficient moisture-electric generation from the hydrological cycle by establishing a stable internal directed water/ion flow through thermal exchange with the ambient environment. Specifically, the radiative cooling effect of the hydrophobic top layer prevents the excessive daytime evaporation from solar absorption while accelerating nighttime moisture sorption. The introduction of LiCl into the bottom hygroscopic ionic hydrogel enhances moisture sorption capacity and facilitates ion transport, thus ensuring efficient energy conversion. A single device unit (1 cm) can continuously generate a voltage of ~0.88 V and a current of ~306 μA, delivering a maximum power density of ~51 μW cm at 25 °C and 70% relative humidity (RH). The device has been demonstrated to operate steadily outdoors for continuous 6 days.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know