Biofunctionalized dissolvable hydrogel microbeads enable efficient characterization of native protein complexes
Nature Communications, ISSN: 2041-1723, Vol: 15, Issue: 1, Page: 8633
2024
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Mentions1
- News Mentions1
- News1
Most Recent News
Recent Studies from Institute of Chemical Biology Add New Data to Science (Biofunctionalized dissolvable hydrogel microbeads enable efficient characterization of native protein complexes)
2024 OCT 22 (NewsRx) -- By a News Reporter-Staff News Editor at NewsRx Science Daily -- New research on science is the subject of a
Article Description
The characterization of protein complex is vital for unraveling biological mechanisms in various life processes. Despite advancements in biophysical tools, the capture of non-covalent complexes and deciphering of their biochemical composition continue to present challenges for low-input samples. Here we introduce SNAP-MS, a Stationary-phase-dissolvable Native Affinity Purification and Mass Spectrometric characterization strategy. It allows for highly efficient purification and characterization from inputs at the pico-mole level. SNAP-MS replaces traditional elution with matrix dissolving during the recovery of captured targets, enabling the use of high-affinity bait-target pairs and eliminates interstitial voids. The purified intact protein complexes are compatible with native MS, which provides structural information including stoichiometry, topology, and distribution of proteoforms, size variants and interaction states. An algorithm utilizes the bait as a charge remover and mass corrector significantly enhances the accuracy of analyzing heterogeneously glycosylated complexes. With a sample-to-data time as brief as 2 hours, SNAP-MS demonstrates considerable versatility in characterizing native complexes from biological samples, including blood samples.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know