Manipulating the symmetry of photon-dressed electronic states
Nature Communications, ISSN: 2041-1723, Vol: 15, Issue: 1, Page: 10535
2024
- 1Citations
- 1Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Reports Outline Science Research from Tsinghua University (Manipulating the symmetry of photon-dressed electronic states)
2024 DEC 20 (NewsRx) -- By a News Reporter-Staff News Editor at NewsRx Science Daily -- Data detailed on science have been presented. According to
Article Description
Strong light-matter interaction provides opportunities for tailoring the physical properties of quantum materials on the ultrafast timescale by forming photon-dressed electronic states, i.e., Floquet-Bloch states. While the light field can in principle imprint its symmetry properties onto the photon-dressed electronic states, so far, how to experimentally detect and further engineer the symmetry of photon-dressed electronic states remains elusive. Here by utilizing time- and angle-resolved photoemission spectroscopy (TrARPES) with polarization-dependent study, we directly visualize the parity symmetry of Floquet-Bloch states in black phosphorus. The photon-dressed sideband exhibits opposite photoemission intensity to the valence band at the Γ point, suggesting a switch of the parity induced by the light field. Moreover, a “hot spot” with strong intensity confined near Γ is observed, indicating a momentum-dependent modulation beyond the parity switch. Combining with theoretical calculations, we reveal the light-induced engineering of the wave function of the Floquet-Bloch states as a result of the hybridization between the conduction and valence bands with opposite parities, and show that the “hot spot” is intrinsically dictated by the symmetry properties of black phosphorus. Our work suggests TrARPES as a direct probe for the parity of the photon-dressed electronic states with energy- and momentum-resolved information, providing an example for engineering the wave function and symmetry of such photon-dressed electronic states via Floquet engineering.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know