PlumX Metrics
Embed PlumX Metrics

Feshbach hypothesis of high-Tc superconductivity in cuprates

Nature Communications, ISSN: 2041-1723, Vol: 16, Issue: 1, Page: 314
2025
  • 0
    Citations
  • 0
    Usage
  • 0
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Article Description

Resonant interactions associated with the emergence of a bound state constitute one of the cornerstones of modern many-body physics. Here we present a Feshbach perspective on the origin of strong pairing in Fermi-Hubbard type models. We perform a theoretical analysis of interactions between spin-polaron charge carriers in doped Mott insulators, modeled by a near-resonant two-channel scattering problem, and report evidence for Feshbach-type interactions in the dx2−y2 channel, consistent with the established phenomenology of cuprates. Existing experimental and numerical results on hole-doped cuprates lead us to conjecture the existence of a light, long-lived, low-energy excited state of two holes, which enables near-resonant interactions. To put our theory to a test we suggest to use coincidence angle-resolved photoemission spectroscopy (cARPES), pair-tunneling measurements or pump-probe experiments. The emergent Feshbach resonance among spin-polarons could also underlie superconductivity in other doped antiferromagnetic Mott insulators highlighting its potential as a unifying strong-coupling pairing mechanism rooted in quantum magnetism.

Bibliographic Details

Homeier, Lukas; Lange, Hannah; Demler, Eugene; Bohrdt, Annabelle; Grusdt, Fabian

Springer Science and Business Media LLC

Chemistry; Biochemistry, Genetics and Molecular Biology; Physics and Astronomy

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know