Layer-dependent correlated phases in WSe/MoS moiré superlattice
Nature Materials, ISSN: 1476-4660, Vol: 22, Issue: 5, Page: 605-611
2023
- 25Citations
- 76Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations25
- Citation Indexes25
- 25
- CrossRef1
- Captures76
- Readers76
- 76
Article Description
Electron correlation plays an essential role in the macroscopic quantum phenomena in the moiré heterostructure, such as antiferromagnetism and correlated insulating phases. Unlike the phenomena where the interaction involves only electrons in one layer, the interaction of distinct phases in two or more layers represents a new horizon forward, such as the one in the Kondo lattice model. Here, using interlayer excitons as a probe, we show that the interlayer interactions in heterobilayers of tungsten diselenide and molybdenum disulfide (WSe/MoS) can be electrically switched on and off, resulting in a layer-dependent correlated phase diagram, including single-layer, layer-selective, excitonic-insulator and layer-hybridized regions. We demonstrate that these correlated phases affect the interlayer exciton non-radiative decay pathways. These results reveal the role of strong correlation on interlayer exciton dynamics and pave the way for studying the layer-resolved strong correlation behaviour in moiré heterostructures.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know